L2 BeamLines A. Cerri ### The Problem - b-tagging and possibly B physics will need knowledge on the PV position at L2 - Current assumption in most L2 studies: PV=(0,0,0) - Mechanism to get beamlines in L2 not yet clear. Two possiblities | Compute elsewhere | Compute in L2 | |--|---| | Algorithm can be as complicated as we want Consistent BeamLine across L2 PU Full offline performance can be achieved | BeamLine readily available, fast update Quasi-offline performance Partially compensating for non-final detector alignment Can use all LIA: less bias, more statistics! | | message-passing mechanism limited, if at all viableupdate frequency could be too low | Beam position not identical across PUs is however statistically consistent needs to be stored with event info May require some (not much though) CPU time | Pro Con ### The Solution #### We solved the same problem in the CDF/ SVT in real-time with an algorithm which is: - Fast - typically update every 5 seconds - Accurate - Offline-like resolution - Robust - No minimization algorithms used - Simple - Track based - Just need to accumulate few track parameters #### Strategy: - Exact xy fit, with z binning - Robustness improved with: - Tail removal - Pipelined iterations ## Performance - O(IM tracks/second) on a 3GHz machine - err(xy) ~ BeamWidth/ Sqrt(Ntracks) - [I um @ BW=50um and I0000 tracks] - I Hz update costs <2% CPU ### How often does the beam move? Beam center at beginning of store normally stable within 20 microns. Drift during the duration of a store of 20 to 30 microns in x,y (often correlated) Beam slope more stable (variation <20 microradians)